Original Article

Molecular Epidemiology of Hepatitis Viruses and Genotypic Distribution of Hepatitis B and C Viruses in Harbin, China

Xin Ding¹, Hongxi Gu², Zhao-Hua Zhong³, Xu Zilong⁴, Huy Thien-Tuan Tran¹,², Yohko Iwaki¹, Tian-Cheng Li¹, Tetsutarou Sata¹ and Kenji Abe¹*

¹Department of Pathology and
²Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640,
³Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan and
²Department of Microbiology, Harbin Medical University, Harbin, China

(Received January 17, 2003. Accepted February 20, 2003)

SUMMARY: We carried out a molecular-based epidemiological survey of hepatitis viruses, including hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV), in Harbin, China. The study population of 358 subjects consisted of 132 healthy blood donors and 226 liver disease patients residing in Harbin City and surrounding suburbs. The infection rate of each virus among healthy subjects was 14.4% (19/132) for HBV and 2.3% (3/132) for HCV. In contrast, among liver disease patients, the infection rates were 72.6% (164/226) for HBV and 7.5% (17/226) for HCV, respectively (P < 0.01 and P < 0.05, respectively). In particular, nearly 64% of hepatocellular carcinoma patients in Harbin was found to be infected with HBV. The most common viral genotypes were HBV type C (80%) and HCV type 1b (31.3%). Interestingly, a high prevalence of the HBV pre-S1/S2 deletion mutant was found in 13 of 58 (22.4%) subjects. Moreover, testing for HEV among 202 subjects resulted in the detection of anti-HEV IgG in 53 cases (26.2%). The prevalence of anti-HEV IgG has already reached 20% in tested cases aged less than 10 years. These results suggest that HBV infection is widespread in Harbin, China and has led to a high incidence of acute and chronic liver disease in this region.

INTRODUCTION

Viral hepatitis exists throughout the world and is a major global public health problem. Particularly, hepatitis B virus (HBV) and hepatitis C virus (HCV) are the causative agents responsible for parenteral transmitted diseases. It is known that the prevalence of HBV and HCV infections varies according to geographical areas and that their infections appear to correlate with the severity of chronic liver diseases such as liver cirrhosis and hepatocellular carcinoma. In Heilongjiang Province of China, adequate levels of information regarding the molecular epidemiology of hepatitis viruses has not been available thus far, although many epidemiological studies have been reported from China (1-7).

In the present study, we conducted a molecular-based epidemiological study of HBV, HCV, and hepatitis E virus (HEV) among liver disease patients and healthy individuals residing in Harbin, China. Harbin is the capital of Heilongjiang Province and is located in the Northern part of China. We also identified the genotypic distribution of HBV and HCV in this area.

MATERIALS AND METHODS

Study population: We tested 358 serum samples, including samples of 226 patients with liver diseases (27 acute hepatitis, 142 chronic hepatitis, 29 liver cirrhosis, and 28 hepatocellular carcinoma) and 132 healthy blood donors in Harbin, China.

All subjects were residents of Harbin City or surrounding suburbs. Clinical diagnosis was based on liver- function tests, hepatitis virus markers, autoantibodies, tumor markers, ultrasonography, and liver histopathology. The healthy group was made up of persons who had had health checkups in medical centers. They had shown neither clinical symptoms nor abnormalities in laboratory tests. Informed consent for participation in this study was obtained from each individual. These serum samples were collected from 2000 to 2001 and stored at -40°C or below until use.

Nucleic acid extraction and PCR for HBV DNA and HCV RNA detection: Both DNA and RNA were extracted simultaneously from 100 µl of serum using the SepaGene RV-R kit (Sanko Junyaku Co., Ltd., Tokyo). After extraction, the samples were precipitated with isopropanol and washed in ethanol. The resulting pellet was resuspended in 50 µl of RNase-free water. The sequences of PCR primers were as follows. ¹ For HBV (X region): 5'-TGCCAACAGATCCTTCGCGGAGCAGTTCTT-3' (MD42, sense primer, nucleotide [nt] 1392-1421) and 5'-GGTACCAGTTGGTCTCATCTATG-3' (MD26, antisense primer, nt 1625-1607) for the outer primer pairs (233 bases), and 5'-GTCCCCCTCTCTCATGCCGT-3' (HBs1, sense primer, nt 1487-1507) and 5'-ACGTGAGAAAGCGAAGG-3' (HBs2, antisense primer, nt 1604-1658) for the inner primer pairs (233 bases), and 5'-GGGACAACATCCACCAGTACGAT-3' (19, sense primer, nt 2 to 20 and 5'-GCTCATAGGGGCGAGGGTCTA-3' (22, antisense primer, nt 277-295) for the inner primer pairs (268 bases). ² For HCV (5'-untranslated region): 5'-CGGACACTCCACCAGTACGAT-3' (19, sense primer, nt 2 to 20 and 5'-GCTCATAGGGGCGAGGGTCTA-3' (22, antisense primer, nt 312-330) for the outer primer pairs (329 bases), and 5'-CTTTGAGGAAGACTCTGTAC-3' (21, sense primer, nt 28-46) and 5'-ACTGCCAAGCGCCATTACACCTG-3' (22, antisense primer, nt 277-295) for the inner primer pairs (268 bases). The nucleotide positions were deduced from HBV adr4 (8) for HBV and HC-J1 (9) for HCV.

*Corresponding author: Mailing address: Department of Pathology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan. Tel: +81-3-5285-1111 ext. 2624, Fax: +81-3-5285-1189, E-mail: kenjiabe@nih.go.jp
To obtain simultaneous detection of hepatitis B and C viral genomes, we used the multiplex PCR method as described previously (10). Detection was performed in one step that combined cDNA synthesis and PCR in a single tube. That is, for HCV, the first PCR was combined with the reverse transcriptase (RT) step in the same tube containing 50 µl of a reaction buffer prepared as follows: 10 units of RNase inhibitor (Promega, Madison, Wis., USA), 100 units of Moloney murine leukemia virus RT (Promega), 40 ng of each outer primer for HBV and HCV, 300 µM of each of the four deoxynucleotides, 2 units of AmpliTaq Gold DNA polymerase (Perkin-Elmer, Norwalk, Conn., USA), and 1× reaction buffer containing 1.5 mM MgCl₂. To obtain an automatic hot-start reaction, we used AmpliTaq Gold DNA polymerase instead of regular thermostable DNA polymerase. The thermocycler was programmed first to incubate the samples for 50 min at 37°C for the initial RT step and then to preheat at 95°C for 10 min to activate AmpliTaq Gold, followed by 40 cycles at 94°C for 30 s, at 50°C for 45 s, and at 72°C for 1 min using a Perkin-Elmer 2400 or 9700 Thermal Cycler (Perkin-Elmer). For the second reaction, 2 µl (1/25 volume) of the first PCR product was added to a tube containing the second set of each inner primer, deoxynucleotides, AmpliTaq Gold DNA polymerase, and PCR buffer as in the first reaction, but without RT and omitting the initial 50-min incubation at 37°C. Amplification was performed for 40 cycles with the following parameters: preheat at 95°C for 10 min, 20 cycles of amplification at 94°C for 30 s, annealing at 53°C for 45 s, and extension at 72°C for 1 min, followed by an additional 20 cycles at 94°C for 30 s, at 55°C for 45 s, and at 72°C for 1 min. The PCR products were run on 3% agarose gel, stained with ethidium bromide, and evaluated under UV light. The sizes of the PCR products were estimated according to the migration pattern of a 50-bp DNA ladder (Pharmacia Biotech, Piscataway, N.J., USA). To avoid the risk of false-positive results, PCR assays were carried out in duplicate to confirm reproducibility. 

**Genotyping of HBV and HCV by PCR:** Genotyping of HBV was determined by a PCR method using type-specific primers as reported previously (11). In addition, HCV genotyping was assayed by PCR, as reported by Ohno et al. with slight modification (12).

**Nucleotide sequencing of HBV pre-S1/S2 gene:** Using 58 HBV DNA-positive samples, we amplified the HBV pre-S1/S2 gene by semi-nested PCR using the following primers: P1: 5’-TCACCATTTCTGGAACAAAGA-3’ (sense, nt 2817-2839) and S1-2: 5’-CGAACCAGTGAACAAATGGC-3’ (antisense, nt 704-685) for the outer primer pairs, and P1 and S2-2: 5’-GGACATGAAAATCTGAGCCA-3’ (antisense, nt 687-668) for the inner primer pairs. PCR products were separated by 2% agarose gel electrophoresis and purified using the QIAquick gel extraction kit (Qiagen, Inc., Chatsworth, Calif., USA). Recovered PCR products were subjected to direct sequencing from both directions using the ABI PRISM™ Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer). Sequences of amplified cDNA were determined using a sequencer (ABI model 377 and 310; Applied Biosystems, Foster City, Calif., USA).

**Assay for HEV antibody by enzyme-linked immunosorbent assay (ELISA):** Immunoglobulin G (IgG) and IgM antibodies to HEV were measured by ELISA. The ELISA to detect anti-HEV using virus-like particles expressed by a recombinant baculovirus was performed as reported previously (13).

**Statistical analysis:** Statistical analyses were performed using the Student’s t test or Fisher’s exact test. A difference with a P value of <0.05 was considered significant.

**RESULTS**

**HBV and HCV infections and their genotyping:** HBV DNA and HCV RNA were detected in 19 (14.4%) and 3 (2.3%), respectively, of a population of 132 healthy individuals (Table 1). In contrast, among 226 liver disease patients, HBV DNA and HCV RNA were detected in 164 (72.6%) and 17 (7.5%), respectively (P < 0.01 and P < 0.05, respectively). HBV DNA was present in 70.4% of acute hepatitis, 76.1% of chronic hepatitis, 65.5% of liver cirrhosis, and 64.3% of hepatocellular carcinoma patients, respectively. As shown in Table 2, genotype C (80%) of HBV was the most prevalent in the 183 patients tested. For HCV, among 16 samples, genotype 1b (31.3%) was the most common. Finally, 3.3% of HBV and 18.8% of HCV cases examined were unclassifiable in these populations by PCR genotyping.

**Prevalence of anti-HEV antibody:** The prevalence of anti-HEV antibodies was 26.2% (53/202) for the IgG class and 1.5% (3/202) for the IgM class. The age-specific prevalence has already reached 20% in 0 to 10 year-olds and 16.7% in 11 to 20 year-olds, respectively (Fig. 1).

**Pre-S1/S2 deletion mutant of HBV:** We analyzed the nucleotide sequences of the HBV pre-S1/S2 region obtained from 58 Chinese residents of Harbin. The results revealed that 13 of 58 (22.4%) HBV isolates had a deletion mutant in this region. The number of nucleotides deleted varied from 18 to 258 bases, but was not associated with a frame shift of 5

<table>
<thead>
<tr>
<th>Category</th>
<th>n</th>
<th>HBV DNA</th>
<th>HCV RNA</th>
<th>Coinfection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute hepatitis</td>
<td>27</td>
<td>19 (70.4)</td>
<td>2 (7.4)</td>
<td>2 (7.4)</td>
</tr>
<tr>
<td>Chronic hepatitis</td>
<td>142</td>
<td>108 (76.1)</td>
<td>13 (9.2)</td>
<td>8 (5.6)</td>
</tr>
<tr>
<td>Liver cirrhosis</td>
<td>29</td>
<td>19 (65.5)</td>
<td>1 (3.4)</td>
<td>2 (6.9)</td>
</tr>
<tr>
<td>HCC ¹</td>
<td>28</td>
<td>18 (64.3)</td>
<td>1 (3.6)</td>
<td>1 (3.6)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>226</td>
<td>164 (72.6)</td>
<td>17 (7.5)</td>
<td>13 (5.8)</td>
</tr>
<tr>
<td>Blood donor</td>
<td>132</td>
<td>19 (14.4)</td>
<td>3 (2.3)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>183 (51.1)</td>
<td>20 (5.6)</td>
<td>13 (3.6)</td>
</tr>
</tbody>
</table>

¹ hepatocellular carcinoma. Numbers in parentheses indicate percentages.

**Table 1. Prevalence of HBV and HCV in Harbin, China**

![Fig. 1. Age-specific prevalence of anti-HEV IgG among 202 subjects residing in Harbin, China.](Image)
most individuals were infected with genotype C of HBV, with very few being infected with HCV. Knowledge of the relation between the genotypes of HBV and HCV and their pathogenicity in chronic liver diseases, including hepatocellular carcinoma occurrence is awaited with great interest.

Surprisingly, we found in the present study a very high prevalence of HBV pre-S2 mutant (22.4%) that was partially truncated to various sizes. It has been reported that the pre-S2 deletion mutant appears to prevail at low or nonreplicative phases (25-27). The emergence of pre-S mutants may affect viral replication and evade immune surveillance. More investigations are needed to clarify the biology and clinical significance of the spread of HBV with the pre-S1/S2 mutant in this area.

HEV, previously referred to as enterically transmitted non-A, non-B hepatitis, is a major cause of epidemic hepatitis and of acute, sporadic hepatitis in developing countries (28). Many outbreaks of HEV-induced hepatitis have been reported in India, Southeast and Central Asia, Africa, and Mexico (29). Our results indicate that a high prevalence of anti-HEV antibody has already been reached in those less than 10 years of age in Harbin, suggesting that the enterically transmitted infectious disease is prevailing in this area.

In conclusion, HBV infection was found to be the primary cause of liver diseases in Harbin, China. In particular, more than half of hepatocellular carcinoma patients in Harbin were found to be infected with HBV, with the major HBV genotype being type C. Establishment of prevention, serological diagnosis, and treatment of hepatitis viruses is an important area of concern in this area.

ACKNOWLEDGMENTS

This study was supported in part by grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from the Ministry of Health, Labour and Welfare of Japan; and by the International Medical Cooperation Research Grant in Japan.

REFERENCES


