Short Communication

Isolation of a Promoter Region of a Secreted Metalloprotease Gene from Microsporum canis

Tsuyoshi Yamada1,2, Koichi Makimura1,2,*, Asuka Hirai3, Rui Kano1, Atsuhiro Hasegawa1, Katsuhisa Uchida1,2 and Hideyo Yamaguchi1,2

1Teikyo University Institute of Medical Mycology and
2Genome Research Center, Teikyo University, Tokyo 192-0395 and
3Department of Pathobiology, School of Veterinary Medicine, Nihon University, Kanagawa 252-8510, Japan

(Received July 28, 2003. Accepted November 28, 2003)

SUMMARY: MEP3 of Microsporum canis encodes a 43.5 kDa extracellular keratinolytic metalloprotease, which is thought to be one of the virulence-related factors in dermatophytosis. In order to analyze the system underlying the regulation of MEP3 gene expression, the 5′-upstream region was isolated by inverse PCR. The nucleotide sequence of a DNA fragment of about 2.1 kb containing the coding region contains putative transcription factor binding sites and transcriptional initiation points. Further analyses of the regulatory sequence may be useful for understanding the molecular basis of the coordinated expression of the various genes involved in dermatophytosis.

Dermatophytes, fungal pathogens, invade keratinized structures, such as hair, skin, and nails, causing an infectious disease called dermatophytosis (ringworm). Among the various species of dermatophytes, Microsporum canis is the main causative agent of dermatophytosis in animals. Infected cats and dogs are the most common sources of human infection through zooonosis (15).

The use of extracellular enzymes to penetrate through the solid structural barriers in the host appears to be a common strategy for treatment against fungal pathogens. Dermatophytes commonly gain entry into the host via hair, skin, or nails, and therefore the keratins, the major constituents of these cornified tissues, would be the first target for such enzymes. Thus, a great deal of attention has been focused on keratinolytic proteases (the keratinases) as a possible target for treatment of dermatophytosis. Several keratinases have been purified from dermatophytes, and some of their biochemical characteristics have been reported previously (1,2,13,18,19,21). However, few reports have investigated the molecular characteristics of genes encoding the keratinases, limiting our understanding of the mechanism of host invasion of dermatophytes.

An extracellular keratinolytic metalloprotease (43.5 kDa) was purified from a feline clinical isolate of M. canis, and its characteristics were partially identified (3). Production of this 43.5 kDa metalloprotease was shown to be induced specifically by keratin, suggesting that this enzyme may be one of the virulence-related factors involved in dermatophytosis. The N-terminal 13 amino acid sequence of the mature protein showed a high degree of similarity (about 60%) to an extracellular metalloprotease from Aspergillus fumigatus (10). Recently, Brouta et al. (4) isolated three metalloprotease genes (MEPs) from a M. canis genomic library, and demonstrated that MEP3 (DDBJ/EMBL/GenBank accession number: AJ490183) encodes the 43.5 kDa metalloprotease. They also showed that MEP3 is expressed in vivo during dermatophytic infection of experimental animals by M. canis. Thus, the regulation of these genes was suggested to be important in the invasion of target tissues by M. canis. Nucleotide sequences in the 5′ flanking region of the ATG initiation codon are often involved in the regulation of gene expression, containing both promoter and enhancer sequences that regulate transcription.

Here, we describe the isolation of a DNA fragment located upstream from the coding region of MEP3 by inverse PCR (20). Hyphae of M. canis (teleomorph: Arthroderma otae) TIMM4092 (11,12) were cultured in flasks containing 50 ml of potato dextrose broth at 28°C. After 14 days in culture, the hyphae were collected, and the genomic DNA was isolated according to the method of Girardin and Latge (9). The nucleotide sequence of MEP3 was used to design a pair of specific primers as shown in Fig. 1. Aliquots of 10 ng of genomic DNA were digested with EcoRI and circularized by self-ligation. The reaction was carried out overnight at 16°C with 1.4 Weiss units of T4 DNA ligase (Takara Bio, Shiga), in a total volume of 100 μl. Aliquots of 2 μl of the self-ligation mixture were used for amplification with a pair of primers, IPCR-SP1 (5′-TGACGACCACTACATTGGCA-3′) and IPCR-ASP1 (5′-TGGATCTTTCTGAGCGGTAGC-3′). Amplification was performed by 40 cycles of PCR followed by the hot-start method (each PCR cycle was comprised of 15 sec at 94°C, 30 sec at 65°C, 4 min at 68°C). Reactions were performed in 25 μl containing 0.3 μM of the primer pair IPCR-SP1 and IPCR-ASP1, 0.2 mM deoxynucleotides, 1.5 mM MgSO4, and 0.5 units of a high fidelity KOD-Plus-DNA polymerase (Toyobo Biochemicals, Tokyo) in the corresponding buffer. PCR resulted in an intense band at around 2.1 kb and only a few faint bands. The intense band was extracted from the gel and cloned in the plasmid pBluescript SK- (pBSK-) (Stratagene, La Jolla, Calif., USA). Four clones were sequenced, and all of the insert sequences matched perfectly. Both the short sequence between primer IPCR-SP1 and the EcoRI site of the coding region, and the sequence between the initiation codon (ATG) and primer IPCR-ASP1 were consistent with those of MEP3. Sequencing
of these clones led to identification of the 976 bp nucleotide sequence (DDBJ/EMBL/GenBank accession number: AB125268) (Fig. 2). Finally, in order to confirm that the identified nucleotide sequence was actually located upstream from the coding region of MEP3, PCR was carried out on the genomic DNA using a pair of primers, IPCR-SP2 (5´-CTGGCGCTGGACTTTGGCAAACGAAC-3´) and IPCR-ASP2 (5´-GCTATGTACAGACGCATTCCTAA-3´). Three programs, HC-TATA (Wheat & Barley Genomics Program, http://125.itba.mi.cnr.it/. webgene/wwwHc-tata.html), Neural Network promoter (Berkeley Drosophila Project, http://www.fruitfly.org/seq-tools/promoter.html), and The TFSEARCH (Parallel Application TRC Laboratory, RWCP, http://www.cbrc.jp/research//db/ TFSEARCH.html), were used to determine the transcription-related elements or motifs. We detected a sequence of three TATA-like elements (-711, -629, and -147) and two putative transcriptional start points (-792 and -153), but no CAAT box in the sequence. Interestingly, the putative NIT-2 binding motifs (consensus, TATCTA) were localized around this region (-125 and -111) (Fig. 2), suggesting that regulatory genes homologous to nit-2 may be involved in controlling the expression of MEP3. nit-2 is a major positive-acting regulatory gene of the nitrogen control circuit in the fungus Neurospora crassa, the product of which is necessary for the expression of a set of genes encoding enzymes that allow the organism to utilize a number of secondary nitrogen sources (nitrate, purine, amino acids, etc.) under conditions of low nitrogen availability (6-8,14,17). These enzymes include extracellular proteases, as well as nitrate and nitrite reductases, and purine catabolic enzymes. As the surfaces of the keratinized tissues that dermatophytes parasitize are poor in primary nitrogen sources, such as ammonia and glutamine, the tissues themselves could be secondary nitrogen sources. Thus, dermatophytes may produce a set of extracellular keratinolytic proteases, such as the 43.5 kDa metalloprotease, in part to cleave keratins into metabolically usable nitrogen compounds for their growth.

A. fumigatus has only a single extracellular metalloprotease gene in its genome (10). We isolated a cDNA clone encoding a polypeptide identical to MEP3 from M. canis strain TIMM4092 and estimated its copy number in the genome by Southern blotting analysis. Aliquots of 5 µg of genomic DNA digested with EcoRI, PstI, or XbaI, that have no cleavage sites within the cDNA, were subjected to electrophoresis on 1.0% agarose gels, and transferred onto Hybond N+ membranes (Amersham Biosciences, Piscataway, N.J., USA). Hybridization was carried out using an ECL direct nucleic acid detection kit according to the manufacturer’s instructions.

![Fig. 1. Schematic representation of specific primers used in inverse PCR amplification of the 5′-untranslated region of the MEP3 gene. An EcoRI cleavage site is shown on MEP3.](image)

![Fig. 2. Nucleotide sequence of the 5′-untranslated region of M. canis MEP3. Putative regions related to the TATA motif (A) and NIT2 protein binding motif (B) are shown in boldface and are underlined. Two predicted transcriptional start points are indicated by asterisks.](image)
acid labeling and detection system (Amersham Biosciences). When the partial cDNA fragment (nucleotide position 374 to 1453 in the cDNA of MEP3) was used as a probe, only an intense hybridization signal was observed in all DNA digests (Fig. 3). Upon digestion with both EcoRV and XbaI, hybridization signals were detected at less than 4.0 kb. A similar pattern was also obtained in another six clinical isolates from dogs and cats in Japan (data not shown). As the probe used here was specific to MEP3, it was suggested that the MEP gene exists as a single copy in the genome of M. canis. Various extracellular proteases produced having different proteolytic activities assist the invading fungi to penetrate through host barriers and are thought to be virulence factors. Thus, the multiplicity of the extracellular proteases, such as the MEP gene product, gives the fungal pathogens a competitive advantage in overcoming the complicated host defense systems against individual enzymes. It has been reported in Candida spp. that production of several different proteases encoded by a multiple gene family contributes to pathogenicity. MEPs are thought to be virulence factors for Microsporum canis strains, based on the DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J. Clin. Microbiol., 37, 920-924.

With the exception of the M. canis MEPs, genes encoding the keratinolytic proteases have not been isolated from dermatophyties. Therefore, very little is known about how the production of these enzymes is induced in response to external keratin stimuli. The data obtained here may be the first step in obtaining a deeper understanding of the molecular basis for coordinated expression of the various genes involved in dermatophytosis.

REFERENCES


