Original Article

Polymorphisms of the HLA-B and HLA-DRB1 Genes in Thai Malaria Patients

Hathairad Hananantachai, Jintana Patarapotikul, Jun Ohashi*, Izumi Naka, Sornchai Looaresuwan and Katsushi Tokunaga

Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand and

1Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan

(Received July 1, 2004. Accepted October 8, 2004)

SUMMARY: The high degree of polymorphism of human leukocyte antigen (HLA) genes has been suggested to result from natural selection against susceptibility to a variety of infectious pathogens, including malaria. HLA molecules are considered to play a crucial role in the defense of the host against malarial infection, and different HLA class I and II alleles have been reported to be associated with reduced susceptibility to malaria or severity of malaria in different populations. To test for associations between HLA alleles and severity of malaria in a Thai population, polymorphisms of HLA-B and HLA-DRB1 genes were investigated in 472 adult patients in northwest Thailand with Plasmodium falciparum malaria. In this study, malaria patients were classified into three groups: mild malaria, non-cerebral severe malaria, and cerebral malaria. Our results revealed that the allele frequencies of HLA-B46, -B56, and -DRB1*1001 were statistically different between non-cerebral severe malaria and cerebral malaria (P = 0.005), between mild malaria and cerebral malaria (P = 0.032), and between mild malaria and non-cerebral malaria (P = 0.007). However, our results may be showing false positives due to multiple testing. Thus, further study with a larger sample size must be conducted to obtain conclusive evidence of the association of these HLA-B and DRB1 alleles with severity of malaria in Thailand.

INTRODUCTION

Malaria infection caused by Plasmodium falciparum is one of several common fatal diseases in humans. It remains a major cause of morbidity and mortality in tropical countries, affecting 300 million people and causing more than 2 million deaths annually. Malaria infection is variable; not all infected patients have severe or cerebral symptoms. The reasons for this variability have not yet been well documented, but variability between individuals’ genetic background has long been proposed as a possible cause. Human leukocyte antigen (HLA) genes have been prominent candidates for investigation, as they have a remarkable degree of genetic polymorphism. A large number of alleles have been identified at HLA class I and II loci: 490 HLA-B (class I) and 315 HLA-DRB1 (class II) alleles were reported in 2002 (1). Because the primary role of HLA molecules is to present peptides derived from infectious pathogens to T cells in the immune response against infection, the high degree of polymorphism of the HLA genes may have been attained and maintained through natural selection imposed by infectious organisms (2,3).

In the case of malaria, the first convincing association study was carried out in West Africans, and the frequent HLA-Bw53 allele and the special DRB1*1302-DQB1*0501 haplotype were found to be independently associated with reduced susceptibility to severe malaria (4). Furthermore, HLA-Bw53-restricted cytotoxic T lymphocytes are reported to recognize a conserved epitope in P. falciparum liver-stage antigen type 1 (5). The evidence clearly demonstrates the advantage of these alleles, which are common in the sub-Saharan region, in fighting against fatal malaria that is highly endemic. However, different ethnic groups and populations have different allelic distributions, and epidemiological studies have found different alleles to be associated with malaria or with the severity of malaria in different populations (6-8). Therefore, research on the associations between HLA alleles and malaria in other diverse regions remains necessary. In the present study we examined whether HLA alleles in a Thai population confer either protection against or susceptibility to severe malaria. This study investigated the HLA-B and DRB1 alleles in mild and severe malaria patients living in northwest Thailand.

MATERIALS AND METHODS

Study sample: Included in this study were 202 mild malaria, 161 non-cerebral severe malaria, and 109 cerebral malaria patients living in northwest Thailand near the border with Myanmar. All patients underwent treatment at the Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University. For all patients, malarial infection by P. falciparum was confirmed by a blood smear positive for the asexual form of P. falciparum. The clinical manifestations of severe and mild malaria have been described elsewhere (9,10), but note that patients with cerebral malaria were not included in the severe malaria class in the present study. Thus, patients were classified into three malaria groups: mild malaria, non-cerebral severe malaria, and cerebral malaria. All individuals were 13 years old or older, and the mean ages of patients with mild malaria, non-cerebral severe malaria, and cerebral malaria were 25.5, 23.8, and 28.6 years, respectively. This study was approved by the institute review board of the Faculty of Tropical Medicine, Mahidol University, and
informed consent was obtained from all patients.

Genomic DNA: Genomic DNAs from all patients were purified from peripheral blood leukocytes using a commercially available kit (QIAamp blood kit; Qiagen, Hilden, Germany).

Allele typing of HLA-B and -DRB1 alleles: Typing for the HLA-DRB1 and -B genes was performed using the PCR-microtiter plate hybridization (MPH) method as previously described (11).

Statistical analysis: Allele frequencies were compared between pairs of malaria patient groups, using a chi-square test based on a 2×2 contingency table. In brief, when allele A was tested, all other alleles were regarded as non-A alleles for the 2×2 contingency table. Frequencies of haplotypes were estimated using the maximum likelihood method based on an EM algorithm (12), using ARLEQUIN software (13).

RESULTS

Table 1 shows HLA-B allele frequencies in patients with mild malaria, non-cerebral severe malaria, and cerebral malaria. In the population studied, 19 HLA-B alleles showed allele frequencies of more than 1%, and the most common allele was HLA-B15 (allele frequency 20.5%). It should be noted that each type of HLA-B consists of several alleles that can be distinguished at the sequence level, but that were not distinguished by the hybridization assay used in this study. Therefore, the exact number of alleles in the studied population is almost certainly greater than 19. At the HLA-B locus, the allele frequencies of HLA-B46 and B56 were significantly different between the non-cerebral severe malaria and cerebral malaria groups ($P = 0.005$), and between the mild malaria and cerebral malaria groups ($P = 0.032$).

Table 2 shows HLA-DRB1 allele frequencies in patients with mild malaria, non-cerebral severe malaria, and cerebral malaria. In the studied population, 18 HLA-DRB1 alleles were found to have frequencies of more than 1%, and four alleles, DRB1*0701, DRB1*1202, DRB1*1501, and DRB1*1502, had population frequencies of more than 10%. Additionally, the DRB1*1001 allele showed a difference in allele frequency between mild and non-cerebral severe malaria patients at a significance level of 5% ($P = 0.007$).

DISCUSSION

The polymorphisms of the HLA-B and HLA-DRB1 genes were investigated in mild malaria, non-cerebral severe, and cerebral malaria patients living in northwest Thailand. In this study, HLA-B46 ($P = 0.005$), -B56 ($P = 0.032$), and -DRB1*1001 ($P = 0.007$) showed significant differences in allele frequencies between malaria groups. However, we examined a total of 37 alleles for three groups, resulting in 111 ($= 37 \times 3$) chi-square tests. Because such multiple testing results in an inflation of type I error, it is necessary to adjust the significance level. When the Bonferroni correction is applied to the present study, the significance level is 0.045% ($= 5/111\%$). After this correction, none of the three alleles mentioned above showed a statistically significant difference between groups. Thus, the associations of these HLA-B and -DRB1 alleles with severity of malaria in the Thai population are not conclusive at present. Assuming that there is an authentic association, the influence of these alleles on malaria severity is not expected to be strong. This is not surprising for infectious diseases, in which different degrees of association are found for different HLA alleles. In addition, the complex nature of pathogenesis may also play a role; the interaction of many genes, instead of a single gene, may influence disease severity.

<table>
<thead>
<tr>
<th>Allele Typing of HLA-B and -DRB1 Alleles: Typing for the HLA-DRB1 and -B genes was performed using the PCR-microtiter plate hybridization (MPH) method as previously described (11).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical analysis: Allele frequencies were compared between pairs of malaria patient groups, using a chi-square test based on a 2×2 contingency table.</td>
</tr>
</tbody>
</table>
Finally, it is possible that the sample size was too small to detect a statistically significant difference. For example, in order to obtain 80% discriminative power at a significance level of 0.045% for the examination of the difference in allele frequencies, 631 non-cerebral severe malaria and 631 cerebral malaria patients would be required in a two-sided chi-square test (14, 15).

In Gambia, the HLA-Bw53 and -DRB1*1302 alleles are common and are associated with reduced susceptibility to severe malaria (4). However, HLA-Bw53 and -DRB1*1302 were rarely found in our population. Alleles common in the Thai population were found to be different from those common in Gambia, and the common Thai alleles did not show any significant association with reduced susceptibility to severe malaria, even at a significance level of 5%. Our findings might imply that the threat of fatal malaria in Thailand is not as serious as in Africa, where malaria has been a major cause of death. In Africa, cerebral or severe malaria occurs primarily in young children, while in Thailand, cerebral malaria affects both children and adults. Thus, the intensity of selection by malaria may not be as strong in Thailand as it is in Africa, and the allele frequencies of common alleles in the population studied may not have been increased due to positive selection against severe malaria.

The tumor-necrosis factor-alpha (TNFA) gene is located between the HLA-B and HLA-DRB1 genes. Although the promoter allele of TNFA-308A, was found to be associated with susceptibility to cerebral malaria in Gambia (16), this allele did not show any association in our previous study with the same samples (17). The TNFA-308A allele was inferred to be located on the HLA-B58 – DRB1*0301 haplotype in the studied population based on the estimated three-locus haplotype frequencies. TNFA-308A showed especially strong linkage disequilibrium with HLA-B58.

Recently, we reported a significant association of the promoter polymorphism of IL13, IL-13 -1055C>T, with protection from non-cerebral severe malaria in the same samples (18). It therefore seemed possible that HLA alleles might show significant associations with severity of malaria within the subset of patients with the IL-13 -1055C>T allele, or within the subset lacking this allele. The present data were thus divided into two subsets according to possession or lack of IL-13 -1055C>T, and the allele frequencies of HLA-B and -DRB1 were compared between mild, non-cerebral severe, and cerebral malaria groups within each subset. However, no statistically significant difference in allele frequency was detected after the Bonferroni correction was applied (data not shown). Thus, the possession of the protective allele IL-13 -1055C>T does not appear to strongly influence the association of HLA-B and -DRB1 alleles with severe malaria.

ACKNOWLEDGMENTS

We sincerely thank the patients who participated in this study.

This study was partly supported by the Core University System Exchange Program under the Japan Society for the Promotion of Science, coordinated by the University of Tokyo and Mahidol University, The National Research Council of Thailand, and a Grant-in-Aid for Scientific Research on Priority Areas (C) “Medical Science” from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

