Original Article

Newly Established Monoclonal Antibodies for Immunological Detection of H5N1 Influenza Virus

Kazuo Ohnishi1, Yoshimasa Takahashi1, Naoko Kono2, Noriko Nakajima3, Fuminori Mizukoshi1, Shuhei Misawa4, Takuya Yamamoto1, Yu-ya Mitsuki1, Shuichifu1, Nakami Hirayama1, Masamichi Ohshima1, ManabuAto1, Tsutomu Kageyama2, Takato Odagiri2, Masato Tashiro2, Kazuo Kobayashi1, Shigeyuki Itamura2, and Yasuko Tsunetsugu-Yokota1*

1Department of Immunology, 2Influenza Virus Research Center, and 3Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640; and 4Tsuruga Institute of Biotechnology, Toyobo, Co., Ltd., Fukui 914-8550, Japan

(Received October 4, 2011. Accepted October 28, 2011)

SUMMARY: The H5N1 subtype of the highly pathogenic (HP) avian influenza virus has been recognized for its ability to cause serious pandemics among humans. In the present study, new monoclonal antibodies (mAbs) against viral proteins were established for the immunological detection of H5N1 influenza virus for research and diagnostic purposes. B-cell hybridomas were generated from mice that had been hyperimmunized with purified A/Vietnam/1194/2004 (NIBRG-14) virion that had been inactivated by UV-irradiation or formaldehyde. After screening over 4,000 hybridomas, eight H5N1-specific clones were selected. Six were specific for hemagglutinin (HA) and had in vitro neutralization activity. Of these, four were able to broadly detect all tested clades of the H5N1 strains. Five HA-specific mAbs detected denatured HA epitope(s) in Western blot analysis, and two detected HP influenza virus by immunofluorescence and immunohistochemistry. A highly sensitive antigen-capture sandwich ELISA system was established by combining mAbs with different specificities. In conclusion, these mAbs may be useful for rapid and specific diagnosis of H5N1 influenza. Therapeutically, they may have a role in antibody-based treatment of the disease.

INTRODUCTION

The highly pathogenic (HP) H5N1 avian influenza virus caused the first outbreak in humans in Hong Kong in 1997. This outbreak resulted in the infection of 18 people and resulted in six deaths (1,2). Thereafter, it was determined that H5N1 avian influenza virus was continuously circulated among geese in Southeastern China. Eventually, it spread to other Southeast Asian countries, where it severely damaged poultry farms (3,4). Subsequent H5N1 outbreaks in humans occurred in China and Vietnam in 2003 and in Indonesia in 2005. The most recent endemic has occurred in Egypt. According to a World Health Organization report, the H5N1 avian influenza virus had infected 565 people and resulted in 331 deaths by August 19, 2011 (5). Therefore, although sporadic, this fatal human infection is persistent and has the potential to cause serious future pandemics.

In humans, infection with HP H5N1 avian influenza virus causes high fever, coughing, shortness of breath, and radiological findings of pneumonia (6–8). In severe cases, rapidly progressive bilateral pneumonia develops, causing respiratory failure and may be responsible for the high mortality associated with this virus. de Jong et al. analyzed human cases of H5N1 infection and found that a high viral load and the resulting intense inflammatory response caused severe symptoms; furthermore, viral RNA was frequently detected in the rectum, blood, and nasopharynx (9). Thus, it is essential to detect HP influenza virus infection early and rapidly in order to provide early interventions that protect patients from devastating respiratory failure that arises from a high viral load. Additionally, early viral detection would facilitate rapid identification of infected patients and prevent unregulated contact with other people.

The present diagnostic standard for HP H5N1 influenza is the presence of the neutralization antibody. However, it takes more than 1 week for H5N1-specific antibodies to develop, and a well-equipped biosafety level 3 (BSL3) laboratory is required for the virus neutralization assay. A simpler method is the hemagglutination-inhibition assay using horse erythrocyte. This method has been widely performed on paired acute and convalescent sera from patients with HP H5N1 influenza virus infections. Although this method has acceptable sensitivity, its specificity has been questioned (7).

Isolating the virus from patient samples is the gold standard for diagnosing an infection; however, this is not always possible. For example, the method of sample preparation and preservation strongly influence the ability to isolate the virus. Moreover, a BSL3 laboratory is essential. At present, the most sensitive and rapid method for initial diagnosis of H5N1 virus infections is by conventional or real-time reverse-transcriptase polymerase chain reaction (RT-PCR). However, this proce-
dure requires expertise in molecular virology and expensive equipment and reagents. Moreover, because of its high sequence specificity, this approach could fail to identify mutant influenza viruses that continually evolve due to a high mutation rate (8).

For screening suspected H5N1 influenza virus in the field, the ideal approach would be to employ an immunology-based technique that detects viral antigens. Such a method is simple and rapid. However, its sensitivity and specificity depend highly on the antibodies used. Thus, an immunological assay that uses appropriate specific antibodies against H5N1 in combination with specific antibodies against other subtypes of influenza virus or viruses that cause febrile diseases would be useful for screening in areas with endemic influenza-like illness. While there are several rapid influenza virus diagnostic systems available for seasonal influenza (10), few exist for H5N1 influenza. Therefore, we have developed a simple and rapid diagnostic system with high sensitivity and specificity for H5N1 influenza virus.

Influenza virus belongs to the family Orthomyxoviridae; its genome consists of a negative-sense, single-stranded RNA with eight segments, each encoding structural and non-structural proteins (11). Influenza A viruses are classified into several subtypes based on the hemagglutinin (HA) and neuraminidase (NA) serotypes. In total, there are 16 HA and 9 NA serotypes. The H5N1 viruses are divided into clades 1 and 2 based on their HA genotypes. Clade 2 has been further subdivided into five sub-clades (12). Clade 1 viruses were predominant in Vietnam, Thailand, and Cambodia in the early phase of the 2004–2005 outbreak, whereas clade 2.1 viruses were endemic in Indonesia at that time (8). These two viruses are the major prototypes for the preparation of pandemic H5N1 vaccines. We used inactivated purified clade 1 virion [A/Vietnam/1194/2004 (NIBRG-14)] as an immunizing antigen to establish mouse monoclonal antibodies (mAbs) specific for H5N1 influenza virus. Characterization of these mAbs revealed that they could detect H5N1 viruses when used in an immunofluorescence staining assay (IFA), Western blotting analysis, immunohistochemistry, and antigen-capture sandwich ELISA. In addition, the mAbs had significant in vitro neutralization activity against H5N1 viruses, and some broadly detected both clade 1 and 2 viruses.

MATERIALS AND METHODS
Viruses and cell culture: The NIBRG-14 (H5N1) virus, which possesses modified HA and NA genes derived from the A/Vietnam/1194/2004 strain on the backbone of six internal genes of A/Puerto Rico/8/34 (PR8), was provided by the National Institute for Biological Standards and Controls (NIBSC; Potters Bar, UK), A/Indonesia/05/2005 (Indo5/PR-8-RG2), A/Turkey/1/2005 (NIBRG-23), A/Anhui/01/2005 (Anhui01/PR-8-RG5) were also obtained from NIBSC. All non-H5N1 strains were obtained from a stockpile of seed vaccines of the Influenza Virus Research Center of the National Institute of Infectious Diseases. The live virus was manipulated in a BSL2 laboratory. To produce and purify the virion, the NIBRG-14 and PR8 viruses were propagated in the allantoic cavity of 10-day-old embryonated hens' eggs and purified through a 10–50% discontinuous sucrose gradient by ultracentrifugation (13). The viruses were then resuspended in phosphate-buffered saline (PBS) and inactivated by ultraviolet (UV) irradiation or by treatment with 0.05% formalin at 4°C for 2 weeks. These preparations were served as the inactivated H5N1 virus fraction. These conditions have been previously shown to completely inactivate H5N1 viruses.

Production of mAbs: Nine-week-old female BALB/c mice (Japan SLC, Shizuoka, Japan) were immunized subcutaneously with 20 μg of UV- or formaldehyde-inactivated NIBRG-14 (H5N1) virus using Freund’s Complete Adjuvant (Sigma, St. Louis, Mo., USA). Two weeks later, the mice were boosted with a subcutaneous injection of 5 μg of the inactivated virus emulsified with Freund’s Incomplete Adjuvant (Sigma). Three days after the boost, sera from the mice were tested by ELISA to determine the antibody titer against the NIBRG-14 virus. The three mice with the highest antibody titers were given an additional boost 14 days after the first boost by intravenous injection of 5 μg of the inactivated virus. Three days later, the spleens of these three mice were excised, and the spleen cells were fused with Sp2/O-Ag14 myeloma cells using the polyethylene glycol method of Kozbor and Roder (14). The fused cells were cultured on twenty 96-well plates and selected with hypoxantine-aminopterin-thymidine (HAT) medium. The first screening was conducted by ELISA using formalin-inactivated purified NIBRG-14 (H5N1) and PR-8 (H1N1) virions, which were lysed with 1% Triton X100. The lysates (1 mg/ml) were diluted 2,000-fold with ELISA-coating buffer (50 mM sodium bicarbonate, pH 9.6), and the ELISA plates (Dynatech, Chantily, Va., USA) were coated at 4°C overnight. After blocking with 1% ovalbumin in PBS-Tween (10 mM phosphate buffer, 140 mM NaCl, 0.05% Tween 20, pH 7.5) for 1 h, the culture supernatants of the HAT-selected hybridomas were added and incubated for 1 h. After washing with PBS-Tween, the bound antibodies were detected using alkaline phosphatase-conjugated anti-mouse IgG (1:2,000; Zymed, South San Francisco, Calif., USA) and p-nitrophenyl phosphate, which served as a substrate. In this first screening, hybridomas that reacted to the H5N1 virus (NIBRG-14) but not to the H1N1 virus (PR-8) were selected.

Baculoviral expression of recombinant HA and NA: Recombinant HA (rHA) and NA (rNA) proteins were produced as previously described (13). Briefly, the HA- and NA-coding genes of NIBRG-14 were amplified by PCR to attach a 6x-His tag to the C terminus of HA and to the N terminus of NA. The amplified DNAs were then cloned into pBacPAK8 (Clontech, Mountain View, Calif., USA) and transfected into Sf-21 (Spodoptera frugiperda) insect cells. Recombinant baculoviruses containing the rHA and rNA genes were isolated and used to infect Sf-21 cells. The recombinant proteins tagged with 6x-His were purified with TALON columns (Clontech) according to the manufacturer’s protocol.

Neutralization assay: For the neutralization assay, 100 TCID50 of H5N1 virus, a standard tissue culture infectious dose for such assays, was incubated for 30 min at 37°C in the presence or absence of the purified mAbs, which had been serially diluted twofold. The viruses
were then added to MDCK cell cultures that had been grown to confluence in a 96-well microtiter plate. The virus strains used were A/Vietnam/1194/2004 (NIBRG-14) (H5N1) (clade 1), A/Indonesia/05/2005 (Ind05/PR8-RG2) (H5N1) (clade 2.1), A/Turkey/1/2005 (NIBRG-23) (H5N1) (clade 2.2), and A/Anhui/01/2005 (Anhui01/PR8-RG5) (H5N1) (clade 2.3). After 3-5 days, the cells were fixed with 10% formaldehyde and stained with crystal violet to visualize the cytotoxic effects induced by the virus (15). Neutralization antibody titers were expressed as the minimum concentration of purified immunoglobulin that inhibited a cytotoxic effect.

Western blot analysis: UV-inactivated purified H5N1 virus (0.5 μg/plate) was loaded on SDS-PAGE gels under reducing conditions. The proteins were then transferred to a PVDF membrane (Genetics, Tokyo, Japan). After blocking with BlockAce reagent (Snow Brand Milk Products Co., Tokyo, Japan), the membranes were detected with the mAbs or diluted sera (1:1,000) that had been obtained from mice immunized with UV-irradiated H5N1 virus. After washing, the membrane was reacted with the peroxidase-conjugated F(ab')2 fragment of anti-mouse IgG (H + L) (1:20,000; Jackson ImmunoResearch, West Grove, Pa., USA), and the bands were visualized on X-ray film (Kodak, Rochester, N.Y., USA) with chemiluminescent reagents (Amer sham Biosciences, Piscataway, N.J., USA).

Purification and biotinylation of mAbs: Hybridomas were grown in Hybridoma-SFM medium (Invitrogen, Carlsbad, Calif., USA) supplemented with recombinant IL-6, penicillin (100 U/mL), and streptomycin (100 μg/mL) (16). The culture supernatants were harvested, and 1/100 volume of 1 M Tris-HCl (pH 7.4) and 1/500 volume of 10% NaCl were added directly on a Protein G-Sepharose 6B column (Amer sham Biosciences). The column was washed with PBS and eluted with glycine/HCl (pH 2.8). After measuring the OD280 of the fractions, the protein-containing fractions were pooled, and an equal volume of saturated (NH4)2SO4 was added. The precipitated proteins were dissolved in PBS, dialyzed against PBS, and stored at −20°C. The purified antibodies were biotinylated with sulfo-NHS-LC-biotin (Pierce, Rockford, Ill., USA) according to the manufacturer’s protocol.

Antigen-capture ELISA: The purified antigen-capture mAb was immobilized on a microplate (Immulon 2; Dynatech) by incubating 4 μg/mL of the mAb in 50 mM sodium bicarbonate buffer (pH 8.6) at 4°C overnight. The microplate was blocked with 1% BSA, washed with PBS-Tween, and reacted with serial dilutions of UV-inactivated purified H5N1 virus for 1 h at room temperature. After washing with PBS-Tween, biotinylated probing mAb (0.1 μg/mL) was added to the wells for 1 h at room temperature. After washing, horseradish peroxidase (HRP)-labeled streptavidin (Zymed) was added to the wells for 1 h at room temperature. After washing, 0.4 mg/mL o-phenylenediamine (OPD Sigma P-8412) in OPD Buffer (0.05 M citrate-phosphate buffer pH 5.0, 0.04% H2O2 or TMB(+) substrate (DAKO, Kyoto, Japan) was added. The reaction was stopped by adding 2N H2SO4, and the OD490 or OD450 was measured using a multi-well plate reader (Flow Laboratories Inc., Inglewood, Calif., USA).

Immunohistochemistry: Lung tissues were harvested from mice infected with A/Vietnam/1194/2004 (NIBRG-14) or A/HongKong/483/97 (HK483). In addition, autopsied lung tissues of patients infected with influenza virus (H1N1 or 2009 H1N1pdm) were used. Formaldehyde- or formalin-fixed paraffin-embedded lung tissue sections were deparaffinized with xylene and graded ethanol and then autoclaved in 0.1 M citrate-buffer (pH 6.0) at 121°C for 10 min to retrieve the antigens. Endogenous peroxidase was inactivated with 3% hydrogen peroxide for 30 min at room temperature. After blocking with M.O.M. blocking reagent (Vector laboratories, Burlingame, Calif., USA) or 5% goat serum, the sections were incubated with each of the mouse mAbs or rabbit polyclonal antibody against type A influenza nucleoprotein at 4°C overnight. After washing off the excess antibodies, the sections were incubated with HRP-labeled anti-mouse IgG followed by tyramide signal amplification system (Biotin-free catalyzed amplification system, CSAl; DAKO) or biotinylated anti-rabbit IgG followed by streptavidin/HRP (LSAB kit; DAKO). The labeled peroxidase activity was detected using diaminobenzidine (DAB; Dojin, Kumamoto, Japan) in 0.015% hydrogen peroxide/0.05 M Tris-HCl (pH 7.6). The sections were counterstained with hematoxylin.

RESULTS

Generation of H5N1-specific mAbs: To establish hybridomas that secrete mAbs specific for the H5N1 virus, BALB/c mice were immunized with the whole virion fraction of purified A/Vietnam/1194/2004 (NIBRG-14) virus. The virus had been inactivated by conventional formaldehyde-fixation or by UV-irradiation to avoid possible changes in antigenicity caused by aldehyde fixation. A standard immunization protocol was used, where mice were boosted twice at 2-week intervals with antigen emulsified first in Freund’s Complete Adjuvant and then in Freund’s Incomplete Adjuvant. Three days after the final boost, a cell suspension was prepared from the spleens of three immunized mice and fused with SP-2/O myeloma using a polyethylene-glycol method. The fused cells were then selected with HAT (14). Hybridoma screening yielded eight hybridoma clones that reacted to NIBRG-14 lysate but not PR-8 lysate in ELISA (Table 1). Of these clones, seven were from mice immunized with UV-inactivated virion, and one was from mice immunized with formaldehyde-inactivated virion. Six clones (Niid_H5A, Niid_H5B, Niid_H5C, Niid_H5D, Niid_H5E, and Niid_H5F) reacted to rHA protein from a H5N1 virus (recHA_H5N1), while one clone (Niid_N1A) reacted to rNA protein from a H5N1 virus (recNA_H5N1). The remaining clone (Niid_150KA) did not react to either recHA_H5N1 or recNA_H5N1 by ELISA but did react to a 150-kDa molecule on Western blot analysis (described below). Interestingly, seven of the eight clones were from the mice immunized with UV-inactivated virus. The eight hybridomas were successfully cloned by a repeated limiting-dilution method and adapted to a serum-free hybridoma culture medium. The purified antibodies from each clone were biotinylated and used for further experiments.
Table 1. Summary of the eight H5N1-specific mAbs generated in this study

<table>
<thead>
<tr>
<th>Clone name</th>
<th>Old name</th>
<th>Ig-subclass</th>
<th>ELISA</th>
<th>Western blot</th>
<th>IFA</th>
<th>Histology</th>
<th>Neutralization (μg/mL)</th>
<th>Hemagglutination inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niid_H5A(1)</td>
<td>YH-1A1</td>
<td>IgG2a</td>
<td>+++ - - + -</td>
<td>57 kDa</td>
<td>++</td>
<td>ND</td>
<td>1.5 (Clade-dep)</td>
<td>-</td>
</tr>
<tr>
<td>Niid_H5B(1)</td>
<td>YH-2F11</td>
<td>IgG2a</td>
<td>+++ - + + -</td>
<td>57 kDa</td>
<td>25</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niid_H5C(1)</td>
<td>OM-A</td>
<td>IgG2a</td>
<td>+++ - + + -</td>
<td>57 kDa</td>
<td>++</td>
<td>ND</td>
<td>12</td>
<td>(Clade-dep)</td>
</tr>
<tr>
<td>Niid_H5D(1)</td>
<td>OM-B</td>
<td>IgG2a</td>
<td>+++ - + + -</td>
<td>57 kDa</td>
<td>+ (mo/hu)</td>
<td>ND</td>
<td>12</td>
<td>(Clade-dep)</td>
</tr>
<tr>
<td>Niid_H5E(1)</td>
<td>OM-C</td>
<td>IgG2a</td>
<td>+++ - + + -</td>
<td>57 kDa</td>
<td>(mo)</td>
<td>ND</td>
<td>12</td>
<td>(Clade-dep)</td>
</tr>
<tr>
<td>Niid_H5F</td>
<td>AY-2C2</td>
<td>IgG1</td>
<td>+++ - - + -</td>
<td>150 kDa</td>
<td>+</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niid_N1A(1)</td>
<td>YH-2D3</td>
<td>IgG2a</td>
<td>+++ - - + +</td>
<td>150 kDa</td>
<td>++</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niid_150KA(1)</td>
<td>OM-D</td>
<td>IgG1</td>
<td>+++ - - + -</td>
<td>150 kDa</td>
<td>++</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1): Clones derived from mice immunized with UV-inactivated virus. The remaining clone is derived from a mouse immunized with formaldehyde-inactivated virus.

Western blot analyses with the mAbs: Five mAbs (Niid_H5A, Niid_H5B, Niid_H5C, Niid_H5D, Niid_H5E) detected the 57-kDa H5_H1 protein by Western blot analysis, which suggests that the antibodies detected the linear epitope(s) of a HA1 fragment of H5_HA (Table 1 and Fig. 1). These antibodies also detected the 60-kDa recombinant H5-HA containing the His-tag. One of these clones, Niid_H5E, detected a 40-kDa subfragment of recombinant HA1, which suggests that the antigenic footprint detected by the mAb differs from that of the other four clones (Fig. 1). Niid-H5F, which reacted strongly to NIBRG-14 and rHA (H5) in ELISA, did not react to any proteins by Western blot analysis, presumably because the mAb detects a conformational epitope of H5-HA. The remaining clone, Niid_150KA, detected an unknown high molecular weight protein of approximately 150 kDa.

IFA with mAbs: Upon IFA, the HA-specific mAbs Niid-H5A and Niid-H5F, the NA-specific mAb Niid-N1A, and the Niid_150KA mAb that detects an
Paraformaldehyde-fixed, H5N1 virus-infected MDCK cells were permeabilized by TBS-Tween and incubated with biotinylated mAbs. The mAbs were detected with Qdot655-conjugated streptavidin (red). Shown are representative staining patterns with Niid_H5A, Niid_H5F, Niid_N1A, and Niid_150KA. The negative control staining without mAb is shown on top. The nuclei were counterstained with DAPI (blue).

unknown 150-kDa protein bound to NIBRG-14-infected MDCK cells (Fig. 2). With the exception of Niid_H5F, these mAbs detected both the perinuclear region and the cell surface of NIBRG-14-infected MDCK cells. Niid_H5F did not detect the perinuclear region (presumably the Golgi body), which suggests that the antigenic footprint detected by this mAb differs from those of the other mAbs.

Immunohistochemistry: The Niid_H5C and Niid_H5D mAbs detected influenza virus antigens in the epithelial cells of the bronchioles and alveoli of 4% formaldehyde-fixed, paraffin-embedded lung tissue sections from mice infected with A/Vietnam/1194/2004 (NIBRG-14) (Fig. 3a). However, none of the mAbs detected influenza virus antigen in lung tissue sections from mice infected with A/HongKong/483/97 (HK483) (Fig. 3). In contrast, a polyclonal antibody against type A influenza nucleoprotein detected type A influenza virus nucleoprotein in the tissue sections from both the NIBRG-14 and HK483-infected mice (Fig. 3b, d). Thus, Niid_H5C and Niid_H5D specifically detected the HA antigen of A/Vietnam/1194/2004 (NIBRG-14). The specificity of these mAbs was then examined by using autopsied lung tissue sections from patients infected with seasonal influenza virus (H1N1) or 2009 pandemic influenza virus (2009H1N1pdm). Niid_H5C did not exhibit any crossreactivity, but the Niid_H5D mAb did show non-specific staining with the human lung section. Two other mAbs, Niid_H5B and Niid_N1A, were also subjected to such immunohistochemical analysis but did not show any reaction.

Neutralization assay with mAbs: The ability of the mAbs to neutralize several H5N1 influenza strains was then tested (Table 2). The four purified H5N1 virus strains, NIBRG-14, Indo-RG2, NIBRG-23, and Anhui-RG5, were diluted to 2–3 × 10^2 TCID\textsubscript{50}/0.05 mL (Table 2, lower panel) and incubated with titrated amounts of anti-H5 HA mAbs. The remaining infectivity was then noted (Table 2, upper panel). Niid_H5A most potently neutralized the NIBRG-14 strain; it completely neutralized influenza virus infectivity at a concentration of 78 ng/mL. However, Niid_H5A was less potent in neutralizing the Indo-RG2 and Anhui-RG5 strains, which indicates that the neutralizing ability of this mAb was clade-dependent. In contrast, Niid_H5F and Niid_H5D exhibited relatively broad neutralizing abilities, since they neutralized all of the strains that were tested. Niid_H5C and Niid_H5E also showed characteristic clade-
Fig. 3. Immunohistochemical analyses of lung sections from mice infected with A/Vietnam/1194/2004 (NIBRG-14) or A/HongKong/483/97 (HK483) virus. (a, b) Influenza virus antigens were detected in the epithelial cells of the bronchioles and alveoli of the mouse infected with A/Vietnam/1194/2004 (NIBRG-14) by the Niid_H5C clone (a) and polyclonal antibody against type A influenza nucleoprotein (b). (c, d) Virus antigens were not detected in the lung tissue section of the mouse infected with A/HongKong/483/97 (HK483) when Niid_H5C was used (c). However, virus antigens were detected in this section when a polyclonal antibody against type A influenza nucleoprotein was employed (d).

Table 2. Neutralizing ability of the eight mAbs generated in this study

<table>
<thead>
<tr>
<th>Clone</th>
<th>Neutralizing antibody titer (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIBRG-14 (clade 1)</td>
</tr>
<tr>
<td>Niid_H5A</td>
<td>78</td>
</tr>
<tr>
<td>Niid_H5C</td>
<td>625</td>
</tr>
<tr>
<td>Niid_H5D</td>
<td>625</td>
</tr>
<tr>
<td>Niid_H5E</td>
<td>625</td>
</tr>
<tr>
<td>Niid_H5F</td>
<td>313</td>
</tr>
</tbody>
</table>

The in vitro neutralization assay examined the ability of the mAbs to neutralize H5N1 virus infection of cultured MDCK cells. Briefly, purified H5N1 virus was diluted to 2–3 × 10^2 TCID50/0.05 mL (the quantities are shown in the lower table) and incubated with serially-titrated purified mAbs for 1 h at 37°C. The samples were then placed into 96-well plates in which MDCK cells had been grown to 90% confluence. After 48 h, the cytotoxicity of the mAb-treated viruses was visualized by staining the cells with crystal violet.

NT, not tested.

dependency, suggesting that the epitopes of these mAbs differ. Interestingly, the mAbs were least able to neutralize Anhui-RG5. This may reflect the genetic distance between Anhui-RG5 (clade 2.3) and NIBRG-14 (clade 1).

Antigen-capture ELISA: To quantitatively detect H5N1 virus, we constructed a sandwich ELISA-based virus antigen-capture detection system. Preliminary experiments tested all combinations of two mAbs from the eight mAbs; Niid_H5F had the highest detection sensitivity for purified H5N1 virion and reacted broadly to the H5 HA of viruses belonging to clades 1, 2.1, 2.2, and 2.3. Therefore, Niid_H5F was selected as the antigen-capturing mAb. The antigen-capture ELISA was constructed by immobilizing Niid_H5F (and/or Niid_H5C) on the ELISA plate and using biotinylated Niid_H5D as the detection mAb, since this combination gave the best results (data not shown). Since the eight mAbs
Fig. 4. ELISA reactivity of the Niid_H5A and Niid_H5F monoclonal antibodies (mAbs) to various influenza virus strains. Different influenza virus strains were immobilized on 96-well plates and incubated with biotinylated Niid_H5A or Niid_H5F mAbs followed by peroxidase-labeled streptavidin. The binding of the mAbs was then quantified by a colorimetric assay using TMB as a substrate.

were originally raised against the H5N1 virus strain A/Vietnam/1194/2004 (NIBRG-14), the validity of this system with other strains of H5N1 virus was also examined. As shown in Fig. 4, this system could detect the A/Indonesia/05/2005 (Indo5/PR-8-RG2), A/Turkey/1/2005 (NIBRG-23), and A/Anhui/01/2005 (Anhui01/PR8-RG5) strains but none of the non-H5N1 strains. The sandwich ELISA could detect H5N1 virus protein at concentrations as low as 50 ng/mL HA, namely, >3 SD of negative samples (Fig. 5).

DISCUSSION

In the present study, mAbs against H5N1 influenza virus were established. These mAbs could detect the virus when used in Western blot analyses, IFA, immunohistochemical analyses, neutralization assays, and antigen-capture ELISA. The characteristics of the mAbs are summarized in Table 1.

Of the eight mAb clones that reacted to H5N1 virus in ELISAs, six reacted to rHA. Only one clone reacted to NA protein. Another clone detected an unknown 150-kDa molecule upon Western blot analysis. A hybridoma that secreted a mAb that could detect the nuclear protein or other protein components of H5N1 virus was not detected, presumably because the first screening step identified H5 specificity. These results indicate that the HA protein is a dominant target in the antibody response of HA-subtype specificity, as suggested by other studies (17,18). There is accumulating evidence that the influenza strain-specific epitopes are often localized on the HA1 region, whereas the epitopes that are conserved among various strains are localized on the HA2 region (19–22). It has been reported that the immune response elicited by H1N1pdm yields a high frequency of HA2-specific mAbs (23,24). In the present study, none of the established clones detected the HA2 fragment of H5HA, presumably because this study focused on H5-specific clones.

The mAbs isolated in the present study were assessed for their ability to detect H5N1 virus-infected MDCK cells in IFA. Indeed, the anti-HA and anti-NA mAbs detected the cytoplasmic Golgi-rich region and the cell surface membrane. This reflects the common assembly process of influenza virus (25).

In general, a single diagnostic test is not reliable because of the potential for false positives and negatives. Considering the restricted availability of RNA detection systems (26,27), serological screening systems other than those that detect antibodies are currently being ex-
Fig. 5. Antigen-capture ELISA reactivity of monoclonal antibodies (mAbs) to H5N1 and H1N1 virus strains. The anti-H5 mAb Niid\textsubscript{H5F} was immobilized on 96-well plates and reacted with serially-titrated purified H5N1 virus fractions for 1 h at room temperature. The bound virus proteins were detected by incubation with biotinylated Niid\textsubscript{H5D} (anti-H5) antibody followed by peroxidase-labeled streptavidin. The binding was quantitated by a colorimetric assay that used TMB as a substrate. Abscissa, concentration of purified H5N1 virus proteins. Ordinate, absorbance unit (OD\textsubscript{490}).

ELISA-based antigen-capture assays offer high specificity and reproducibility and have been used to diagnose and monitor many diseases. The present study describes the development of an antigen-capture ELISA system that detects purified H5N1 virus virion at levels as low as 50 ng/mL. The sensitivity of this system, which comprises three anti-HA mAbs, appears sufficiently high to detect virus protein in patient sera, particularly since a recently reported antigen-capture ELISA system detects 50 ng/mL of purified recombinant HA1 protein (28). At present, the sensitivity of the system is being improved, and its usefulness in diagnosing and monitoring H5N1 virus infections is being validated.

The five selected anti-HA mAbs exhibited significant neutralization activity against several viral strains in a clade-dependent manner (Table 2). Of these, Niid\textsubscript{H5F} showed the broadest spectrum of neutralization activity, but it neutralized NIBRG-23 (clade 2.2) more efficiently than the original immunogen NIBRG-14 (clade 1). It would be of interest to determine the features that determine this clade-dependency of mAb recognition. It is also possible that these mAbs have therapeutic potential, if humanized by means of complementarity determining region grafting or mouse-human chimerism.

In conclusion, eight new H5N1-specific mAbs were generated from A/Vietnam/1194/2004 (NIBRG-14)- hyperimmunized mice, six of which were HA-specific. These mAbs were useful in Western blot analyses, IFA, and immunohistology and had in vitro neutralization activity against H5N1 viruses. These mAbs also perform well in a highly sensitive antigen-capture sandwich ELISA system. As such, these mAbs may be useful for the rapid and specific diagnosis of H5N1 subtype influenza virus and may have therapeutic potential.

Acknowledgments We are grateful to Ms. Sayuri Yamaguchi, Yuko Sato, and Yukari Hara for their assistance in establishing the hybridomas. We also thank Dr. Le Mai Thi Quynh at the National Institute of Hygiene and Epidemiology, Vietnam for supplying the A/Vietnam/1194/2004 virus and Dr. John Wood at NIBSC for providing the NIBRG-14 virus.

This work was supported by grants from the Ministry of Health, Labour and Welfare of Japan and from Health Science Foundation of Japan.

Conflict of interest None to declare.

REFERENCES